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ABSTRACT

A prototype convection-allowing system using the Advanced Research version of the Weather Research

and Forecasting (WRF-ARW) Model and employing an ensemble Kalman filter (EnKF) data assimilation

technique has been developed and used during the spring 2016 and 2017 Hazardous Weather Testbeds. This

system assimilates WSR-88D reflectivity and radial velocity, geostationary satellite cloud water path (CWP)

retrievals, and available surface observations over a regional domain with a 3-km horizontal resolution at

15-min intervals, with 3-km initial conditions provided by an experimental High-Resolution Rapid Refresh

ensemble (HRRR-e). However, no information on upper-level thermodynamic conditions in cloud-free re-

gions is currently assimilated, as few timely observations exist. One potential solution is to also assimilate

clear-sky satellite radiances, which provide information on mid- and upper-tropospheric temperature and

moisture conditions. This research assimilates GOES-13 imager water vapor band (6.5mm) radiances using

the GSI-EnKF system to take advantage of the Community Radiative Transfer Model (CRTM) integration.

Results using four cases fromMay 2016 showed that assimilating radiances generally had a neutral-to-positive

impact on the model analysis, reducing humidity bias and/or errors at the appropriate model levels where

verification observations were present. The effects on high-impact weather forecasts, as verified against

forecast reflectivity and updraft helicity, were mixed. Three cases (9, 22, and 24 May) showed some im-

provement in skill, while the other (25 May) performed worse, despite the improved environment. This

research represents the first step in designing a high-resolution ensemble data assimilation system to use

GOES-16 Advanced Baseline Imager data, which provides additional water vapor bands and increased

spatial and temporal resolution.

1. Introduction

The short-term prediction of high-impact weather

requires that accurate observations of precipitation and

the surrounding synoptic environment be assimilated

into numerical weather prediction (NWP) models.

Reflectivity and radial velocity observations from the

network of WSR-88Ds provide a wealth of data on

precipitation and convection, while several statewide

mesonets provide high spatial and temporal resolution

surface observations. However, information about

nonprecipitating clouds and the near-storm environ-

ment is also needed. Satellite observations of the at-

mosphere can provide this information using the

sensitivity of visible, infrared, and microwave radiation

to atmospheric temperature, water vapor, and cloud

properties. Virtually all operational global models, such
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as the Global Forecast System (GFS) and the ECMWF

Integrated Forecast System, currently assimilate many

types of satellite observations, mainly to characterize

the cloud-free environment (e.g., Derber and Wu 1998;

McNally et al. 2000, 2006). Recently, cloudy radiances

have been introduced with some success, but many un-

certainties remain as to how best assimilate them. As-

similating satellite observations has been shown to

improve overall temperature and humidity forecasts on

meso- and larger scales, but its ability to improve the

forecasts of high-impact weather at a storm-scale reso-

lution remains uncertain.

While high in information content, polar orbiting

hyperspectral sensors used in operational models lack

that temporal resolution and necessary low data latency

required for storm-scale applications. Sensors, such as

the Advanced Baseline Imager (ABI) on board the

Geostationary Operational Environmental Satellite-16

(GOES-16) in geostationary orbit, provide data that

meet these temporal requirements but utilize far fewer

channels, reducing, but not eliminating, the information

content available for assimilation (Schmit et al. 2005).

Despite this limitation, several studies havebeen conducted

that assimilate geostationary orbiting imager clear- and all-

sky radiances and/or retrievals and have shown that sig-

nificant improvement in forecast skill is possible (e.g.,

Szyndel et al. 2005;Vukicevic et al. 2006; Stengel et al. 2009;

Polkinghorne et al. 2010; Polkinghorne andVukicevic 2011;

Otkin 2012a,b; Qin et al. 2013; Zou et al. 2013, 2015; Jones

et al. 2013a, 2014, 2015, 2016; Zhang et al. 2016). Using

high-temporal-resolution data in a regional model should

provide greater information content than possible on the

same domain frompolar-orbiting instruments, even though

the latter are more likely to have a larger impact in a global

model with nonfrequent temporal updates.

Several of these studies emphasize assimilating radi-

ances over the ocean, where other observation types are

sparse, to improve tropical cycle track and intensity

forecasts (e.g., Zou et al. 2015; Zhang et al. 2016). For

example, Zhang et al. (2016) used an ensemble Kalman

filter (EnKF) approach, commonly used for radar data

assimilation in convection-permitting NWP models

(e.g., Aksoy et al. 2009, 2010; Dowell et al. 2011; Yussouf

et al. 2013; Wheatley et al. 2015; Johnson et al. 2015), to

assimilate all-sky GOES-13 imager radiances for Hur-

ricane Karl in the Bay of Campeche. Assimilating ra-

diances significantly improved the characterization of

the hurricane within the model while also improving

track and intensity forecasts. Assessing the impact of

assimilating satellite radiances over land, especially the

United States, is much more challenging since other

high-resolution data sources are commonly available

and used in storm-scale data assimilation. Fortunately,

recent research has shown that assimilating high-resolution

satellite observations in combination with radar and other

data sources can improve high-impact weather forecasts.

Jones et al. (2013a, 2015, 2016) assimilated GOES-13 im-

ager cloud water path (CWP) retrievals into a rapidly cy-

cled EnKF data assimilation system using a 3-km grid and

found improvements in cloud cover, reflectivity, pre-

cipitation, and updraft helicity when assimilating these

data over multiple severe weather events. As a result of

these improvements, assimilating CWP has been in-

corporated into the real-time Warn-on-Forecast (WoF)

system used by the Hazardous Weather Testbed for the

spring 2016 and 2017 experiments.GOES-16 products will

be included in future experiments.

While CWP retrievals provide information on the

location and thickness of clouds, they do not provide any

information on the near-storm environment. On the

other hand, infrared satellite radiances do provide this

information since they are sensitive to atmospheric

temperature andmoisture at various atmospheric levels.

Using an OSSE simulation, Jones et al. (2013b, 2014)

showed that assimilating simulated GOES-RABI water

vapor channel radiances can improve short-term winter

weather forecasts, compared to only assimilating con-

ventional and radar observations. A similar OSSE

simulation by Otkin (2012a) improved short-term pre-

cipitation forecasts for a high-impact weather event in

the central United States. We focus on the water vapor–

sensitive channels since atmospheric water vapor con-

tent is highly variable with few actual measurements to

update the model analysis, potentially leading to large

model errors (e.g., Fabry and Sun 2010). Thus, assimi-

lating water vapor radiances provides a great opportu-

nity for geostationary satellite data to improve

high-impact weather forecasting over the United States.

The goal of this research is to assess the impact of

assimilating GOES imager clear-sky water vapor radi-

ances into a WoF system for several high-impact

weather events. This research will assess the impact of

assimilating radiances on the environment and how

these changes affect the characteristics of forecast con-

vection. Four high-impact weather events occurring in

May 2016 are selected for study (Table 1). Each case

shares similar characteristics, in that convection forms

along an eastwardprogressing dryline in high-instability and

low-inhibition environments in a relatively precipitation-

free environment. Beyond these similarities, several differ-

ences exist between each case. The 9 and 24 May events

(especially 24May) were accompanied by strong dynamical

forcing, whereas the 22 and 25 May events were weakly

forced. Three cases also contained large areas of broken

low-level clouds ahead of the dryline, with the 25 May case

having significantly lower cloud coverage. Finally, the
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strong forcing associated with the 24 May event resulted in

convection growing upscale into an MCS after 0000 UTC,

only 2h after convective initiation. This transition took

longer in the other cases. These differences allow for a ro-

bust analysis of the effectiveness of assimilatingwater vapor

radiances over a broad range of conditions.

Following the introduction, section 2 provides a de-

scription of GOES imager radiances and cloud property

retrievals. The extended Gridpoint Statistical Interpola-

tion analysis system (GSI)-based EnKF (GSI-EnKF) sys-

tem used for the data assimilation experiments is discussed

in section 3. Section 4 shows examples of assimilated ob-

servations, as well as radiance observation diagnostics.

Section 5 discusses the impact of radiance data assimilation

on the environmental analysis, while section 6 discusses the

impact on reflectivity and rotation forecasts. Finally, sec-

tion 7 provides concluding remarks.

2. Assimilated observations

a. GOES Imager data

The GOES-M series imager (GOES-12–15) samples

visible and infrared radiation from geostationary orbit

over the continentalUnited States (CONUS) at 5–15-min

intervals (Menzel and Purdom 1994; Schmit et al. 2001).

This instrument has five available spectral bands, in-

cluding one visible (0.65mm) and four infrared bands

(3.9, 6.5, 10.7, and 13.3mm). This research uses the band

whose central wavelength is located at 6.5mm that is

primarily sensitive to mid- and upper-tropospheric

moisture content in clear-sky conditions. It is also sen-

sitive to cloud properties at similar levels during cloudy

conditions. The instrument field of view at nadir is 4 km

for this band. The spectral response function for the

water vapor band peaks at ;375hPa, assuming a stan-

dard atmosphere with a column relative humidity of

50% and a solar zenith angle of 508 (Fig. 1a). Sensitivity
decreases toward the tropopause and nearer to the

surface. The infrared band sensitive to water vapor was

selected over the infrared channels since the latter are

primarily sensitive to temperature, which is often well

analyzed in the model analysis over a CONUS domain.

Another advantage of the water vapor band is its much

lower sensitivity to surface emissivity. Thus, uncer-

tainties in the background surface emissivity table used

are less of a concern for this research. Examples of

GOES-13 imager water vapor band (6.5mm) data are

shown in Fig. 2 for each event analyzed in this research.

All events contain convective elements denoted by

brightness temperatures (TB6.5), 220K, while three out

of four events contain large areas of mid- and upper-

tropospheric dry air with TB6.5. 250K. For 22May, much

of the clear-sky portion of the domain TB6.5 ranges be-

tween 240 and 245K, indicating a moister mid- to upper-

tropospheric environment, compared to the other cases

(Fig. 2b). The ABI on board the GOES-R (GOES-161)

series observes several additional spectral bands, including

three sensitive to water vapor at 6.2, 6.9, and 7.3mm

(Schmit et al. 2005). The additional bands provide some

information on the vertical distribution of atmospheric

water vapor content and will be useful in follow-up re-

search when GOES-16 is fully operational (Fig. 1b).

This data assimilation system also uses cloud water path

retrieved from GOES-13 imager visible reflectances and

infrared radiances using the visible infrared shortwave–

infrared split-window technique (VISST), creating the

SAT-CORPS product (Minnis et al. 2011). CWP and not-

cloudy radiances are used since large uncertainties exist

within the radiative transfer model in areas of thick clouds

and precipitation. Cloud height information is also re-

quired to perform a parallax correction, which adjusts the

location of high-level cirrus to their ground-relative co-

ordinates. The impacts of assimilating CWP retrievals are

described in detail by Jones et al. (2013a, 2015, 2016). CWP

is also used to separate clear from cloudy pixels. All pixels

where CWP . 0kgm22 are considered cloudy, and cor-

responding radiance observations within 61 pixel of

cloudy retrievals are not assimilated. This is to reduce the

potential impact of assimilating partly cloudy observations.

CWP observation errors are a function of CWP value and

range from 0.025 to 0.15kgm22, similar to those employed

by Jones et al. (2015, 2016) (Table 2).

b. Radar and conventional data

WSR-88D Doppler radial velocity are obtained using

level II data from all radars within and surrounding the

regional domain for each case. Radial velocity data are

dealiased and then objectively analyzed using the Obser-

vation Processing andWind Synthesis (OPAWS) software

to a 6-km horizontal grid while retaining the conical

scanning surfaces (Dowell et al. 2004; Dowell and Wicker

2009). Radar reflectivity observations are derived from the

Multi-Radar Multi-Sensor (MRMS) product (Smith et al.

2016), which aggregates quality-controlled reflectivity

from individual radars into a fixed horizontal and

TABLE 1. List of severe weather events for which assimilation of

water vapor radianceswere tested. Forecasts are initiated at 30-min

intervals between 2100 and 0000 UTC for 9, 22, and 24 May and at

15-min intervals for 25 May.

Event Region Forecasts

9 May 2016 Eastern OK 2100–0000 UTC

22 May 2016 Western TX 2100–0000 UTC

24 May 2016 Western OK, KS 2100–0000 UTC

25 May 2016 Central KS 2300–0030 UTC
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vertical grid. Observation errors for radial velocity and

reflectivity are 3m s21 and 5dBZ, which are similar to

those used by Dowell et al. (2004), Aksoy et al. (2009),

and Yussouf et al. (2013) (Table 2).

All radar reflectivity and satellite observations are ob-

jectively analyzed to a 6-km grid, representing double the

model horizontal resolution. Assimilating high-resolution

observations such as these using the ‘‘2Dx’’ guideline has

been shown to be optimal for assimilation into a WoF-

type data assimilation system (Lu and Xu 2009).

Precipitation-free (reflectivity # 0 dBZ) and clear-sky

(CWP 5 0kgm22) retrievals and radiances are further

thinned to 12km bymasking every other 6-km-resolution

observation. Additional thinning was conducted on the

clear-sky and precipitation-free areas, as it was discov-

ered during testing that using these data at full resolu-

tion biased the model toward dry and clear conditions

by incorrectly dissipating clouds and precipitation.

Finally, surface observations of temperature, pressure,

humidity, and wind from the Oklahoma Mesonet are as-

similated into each experiment at 15-min intervals

(McPherson et al. 2007). Observation sites are confined to

the state ofOklahoma, so cases centered in other regions do

not assimilate this information in the current model con-

figuration. Observation errors and covariance localization

information are provided in Table 2 and are similar to those

used by Wheatley et al. (2015) and Jones et al. (2016).

3. GSI-EnKF data assimilation system

The community GSI system represents the current

standard variational data assimilation system designed

for an operational environment (e.g., Kleist et al. 2009;

Hu et al. 2016). The GSI contains the forward operators

required to transform atmospheric observations into

model state variables and includes the Community Ra-

diative Transfer Model (CRTM; Weng 2007; Han et al.

2007), designed to specifically assimilate satellite radi-

ances, and has recently been extended to include the

necessary forward operators for radar reflectivity,

Doppler radial velocity, and cloud water path (Johnson

et al. 2015; Wang and Wang 2017; Jones et al. 2013a).

The GSI system has been combined with an ensemble

Kalman filter to take advantage of the flow-dependent

covariances generated by the ensemble after each as-

similation cycle (Whitaker et al. 2008). Recent studies

by Johnson et al. (2015) and Wang and Wang (2017)

have demonstrated the promise of using GSI-EnKF

system for convective-scale radar data assimilation.

The model configuration is based on the NSSL Experi-

mental WoF System for ensembles (NEWS-e), which

represents a prototype real-time WoF system run during

the 2016 and 2017HazardousWeather Testbeds (Stensrud

et al 2009, 2013; Wheatley et al. 2015; Jones et al. 2016;

Jirak et al. 2014;Gallo et al. 2017). The 2016NEWS-e used

the Advanced Research version of the Weather Re-

search and Forecasting (WRF-ARW)Model, version 3.6.1

(Skamarock et al. 2008), coupled with the parallel en-

semble adjustment Kalman filter in the Data Assimilation

Research Testbed (DART) (Anderson and Collins

2007; Anderson et al. 2009) and assimilated observa-

tions at 15-min intervals into a 36-member ensem-

ble. Initial and boundary conditions were provided by

the first 18 members of an experimental 20-member

FIG. 1. Vertical weighting function for (a) GOES-13 and (b) GOES-16 water vapor bands, assuming a standard

atmosphere with a solar zenith angle of 508 and a total column relative humidity of 50%. Horizontal lines indicate

the pressure level where the weighing function peaks.
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ensemble High-Resolution Rapid Refresh (HRRR-e)

model (Benjamin et al. 2016). Different sets of WRF

Model boundary layer physics and radiation schemes

were applied to each ensemble member to intro-

duce necessary model spread (e.g., Stensrud et al.

2000; Wheatley et al. 2014). Planetary boundary layer

FIG. 2. GOES-13 imager 6.5-mm water vapor band brightness temperature TB6.5 at (a) 2200 UTC 9 May, (b) 2200

UTC 22 May, (c) 2200 UTC 24 May, and (d) 2330 UTC 25 May.

TABLE 2. Observations errors and localization radii used by theGSI-EnKF system for all observation types assimilated. Errors are similar

to those used by Wheatley et al. (2015) and Jones et al. (2016). Vertical localization is given in scale height (SH).

Observation type Error Horizontal localization (km) Vertical localization (SH)

Mesonet U wind 1.75m s21 60 0.45

Mesonet V wind 1.75m s21 60 0.45

Mesonet temperature 1.75K 60 0.45

Mesonet dewpoint 2.0 K 60 0.45

Mesonet altimeter 1.5 hPa 60 0.45

Reflectivity 5.0 dBZ 18 0.8

Clear-air reflectivity 5.0 dBZ 18 0.8

Radial velocity 3.0m s21 18 0.8

CWP 0.025–0.15 kgm22 36 1.0

Clear-sky 6.5-mm TB 1.5 K 36 4.0
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(PBL) schemes include Yonsei University (YSU),

Mellor–Yamada–Janjić (MYJ), and Mellor–Yamada–

Nakanishi–Niino (MYNN; Hong et al. 2006; Janjić 1994;

Nakanishi and Niino 2006). Radiation schemes include

the Rapid Radiative Transfer Model (RRTM), RRTM

for general circulation models (RRTMG) for both

shortwave and longwave radiation, and Dudhia scheme

for shortwave radiation only (Mlawer et al. 1997; Iacono

et al. 2008; Dudhia 1989). Table 3 indicates the combi-

nation of PBL and radiation schemes used for each

member, which is similar to the configuration described

in Wheatley et al. (2015). To create the 36 members

needed for the data assimilation system, the same

physics diversity is applied to the reverse order of

HRRR-e members so that NEWS-e member 19 is based

on the physics combination used in member 1, but the

initial conditions from HRRR-e member 18 (Table 3).

The NEWS-e system initialized at 1800 UTC, using 1-h

forecasts generated from the members of the HRRR-e

at 1700 UTC. The horizontal resolution for both is 3 km,

with 51 vertical levels from the surface to 10hPa

over a 250 3 250 gridpoint domain, which results in a

domain size of 750 km 3 750 km. The location of each

domain was selected to capture the primary severe

weather event of the day, and during real-time testing,

the center point is based on Storm Prediction Center

(SPC) outlook guidance. All ensemble members uti-

lized radiation-aware Thompson cloud microphysics

(Thompson et al. 2004, 2008), and no cumulus parame-

terization was applied. No covariance inflation is applied

to the system, though additive noise is applied to tempera-

ture, humidity, and wind where reflectivity observations

are .25dBZ (Dowell and Wicker 2009). The primary dif-

ference between the NEWS-e and the system used in this

research is the replacement of DART with the GSI-EnKF

system to utilize the CRTM integration present within GSI,

enabling the direct assimilation of satellite radiances.

The observation error for clear-sky TB6.5 was set to

1.5K, similar to the default value present in the GSI

‘‘satinfo’’ file (1.4K). The horizontal localization radius

following Gaspari and Cohn (1999) was set to 36km,

which is the same used for the CWP retrievals currently

used in this data assimilation system. Assigning a verti-

cal localization radiance is more challenging since a

cloud-free radiance observation has no specific height

value to use as a vertical coordinate. The atmospheric

level where the sensitivity is greatest is a function of

temperature, humidity, cloud cover, and trace gas con-

centration. This value is a function of atmospheric con-

ditions, time of day, and model resolution. For this

research, the level of the maximum Jacobian of TB6.5

at each observation point is assigned as the vertical

pressure height and is calculated from the analysis

background of each ensemble member at each assimi-

lation cycle. Vertical localization is set to 4.0 in units of

scale height, which corresponds to a very large, but not

quite infinite, radius of influence. Even though the ver-

tical localization is very large, some sensitivity to the

assigned vertical level of the observation remains. There

remains significant uncertainty in the ideal vertical

pressure height and localization to apply to radiances in

ensemble data assimilation systems (e.g., Lei et al. 2016),

and those used here represent values that performed

well after several sensitivity tests were undertaken.

To properly assimilate clear-sky radiances, a bias ad-

justment must be applied to account for both observa-

tion biases and biases in the radiative transfer model

TABLE 3. PBL and radiation scheme options contained within

each 2016 configuration NEWS-e member. HRRR-e member in-

dicates the HRRR-e member from which the initial conditions

used in the corresponding NEWS-e member originate. Adapted

from Table 2 in Wheatley et al. (2015).

HRRR-e

member

NEWS-e

member PBL

Radiation

SW LW

1 1 YSU Dudhia RRTM

2 2 YSU RRTMG RRTMG

3 3 MYJ Dudhia RRTM

4 4 MYJ RRTMG RRTMG

5 5 MYNN Dudhia RRTM

6 6 MYNN RRTMG RRTMG

7 7 YSU Dudhia RRTM

8 8 YSU RRTMG RRTMG

9 9 MYJ Dudhia RRTM

10 10 MYJ RRTMG RRTMG

11 11 MYNN Dudhia RRTM

12 12 MYNN RRTMG RRTMG

13 13 YSU Dudhia RRTM

14 14 YSU RRTMG RRTMG

15 15 MYJ Dudhia RRTM

16 16 MYJ RRTMG RRTMG

17 17 MYNN Dudhia RRTM

18 18 MYNN RRTMG RRTMG

18 19 YSU Dudhia RRTM

17 20 YSU RRTMG RRTMG

16 21 MYJ Dudhia RRTM

15 22 MYJ RRTMG RRTMG

14 23 MYNN Dudhia RRTM

13 24 MYNN RRTMG RRTMG

12 25 YSU Dudhia RRTM

11 26 YSU RRTMG RRTMG

10 27 MYJ Dudhia RRTM

9 28 MYJ RRTMG RRTMG

8 29 MYNN Dudhia RRTM

7 30 MYNN RRTMG RRTMG

6 31 YSU Dudhia RRTM

5 32 YSU RRTMG RRTMG

4 33 MYJ Dudhia RRTM

3 34 MYJ RRTMG RRTMG

2 35 MYNN Dudhia RRTM

1 36 MYNN RRTMG RRTMG
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(e.g., Derber and Wu 1998; Harris and Kelly 2001;

Auligné andMcNally 2007; Auligné et al. 2007; Dee and

Uppala 2009; Ren 2016). Otherwise, the resulting model

update would have a significant dry or moist bias. For-

tunately, the GSI system has built in tools to apply bias

correction to amultitude of sensors and bands, including

GOES imager water vapor radiances. The operational

bias adjustment scheme is a function of the global bias,

zenith angle, cloud liquid water, and temperature lapse

rate, which represents the overall airmass component

(Derber and Wu 1998; Wu et al. 2002; Zhu et al. 2014).

Additionally, there is a scan angle component that was

applied separately (Derber and Wu 1998). The most

recent iteration of the bias adjustment scheme is

used here, where the airmass-dependent and angle-

dependent components are combined into a single

function (Zhu et al. 2014). Since the bias adjustment

coefficients are likely to change as a function of time due

to changes in the environment, the bias adjustment is

updated at each assimilation cycle. For this research, the

bias adjustment is applied in two steps. First, a constant

2.75K bias adjustment is applied during the computa-

tion of model priors. If no bias adjustment is applied at

this step, the quality-control algorithms often discard

large amounts of good data. The remaining portion of

the bias adjustment is applied during the data assimila-

tion step using the Zhu et al. (2014) method and is up-

dated after each assimilation cycle. The total magnitude

of the bias adjustment for these events generally ranges

between 3.25 and 4.0K.

In addition to clear-sky water vapor satellite radi-

ances, this systemassimilatesWSR-88D radial velocity and

reflectivity observations, GOES-13 satellite cloud water

path retrievals (Minnis et al. 2011; Jones et al. 2015), and

Oklahoma Mesonet data, resulting in one of the first sys-

tems that combines radiances with these other high-

resolution observation types. Table 1 provides a list of

assimilated observations, along with their observation er-

rors and localization radii. All available observations are

assimilated at 15-min intervals continuously from 1800 to

0000 or 0030 UTC the next day, depending on data avail-

ability. Assimilation of CWP ceases at sunset due to

greater uncertainties present with the nighttime retrieval

algorithm. For these cases, this generally occurs around

0000 UTC. Two-hour forecasts are generated for up to

seven analysis times from the first 18 members of the en-

semble, corresponding to the period of severe weather

during a particular event, with forecasts output at 5-min

intervals (Table 2).Using the first 18members captures the

full physics diversity of the ensemble while reducing the

required computing resources. Two sets of experiments

are performed. The first assimilates Oklahoma Mesonet,

radar reflectivity and radial velocity, and CWP retrievals,

which is labeled as control (CNTL), while the second adds

clear-sky TB6.5 to the set of observations assimilated and is

labeled the water vapor (WV) experiment. Analyses and

forecasts from each set of experiments are compared to

determine the impact of assimilating TB6.5 on the envi-

ronment and supercell storm forecasts.

4. Observation diagnostics

Figure 3 shows assimilated surface, radar, and satellite

observations at a selected time for each case studied.

Large areas of clear-air reflectivity (0 dBZ) are being

assimilated in the precipitation-free areas within each

domain with reflectivity (.20dBZ) and radial velocity

being assimilated where precipitation is present

(Figs. 3a,d,g,j). For 24 May, only a few reflectivity ob-

servations are being assimilated at 2200 UTC, as con-

vection is still developing and not yet analyzed by the

model; thus, they are being thrown out as outliers

(Fig. 3g). A large number of satellite observations are

also being assimilated for each case (Figs. 3b,e,h,k). In

clear-sky areas, both CWP 5 0 and TB6.5 are being as-

similated, whereas in cloudy areas, CWP . 0 observa-

tions are assimilated. Note that 9 and 22 May contain

large areas of both convective and nonconvective

clouds, limiting the potential impact of assimilatingTB6.5

(Figs. 3b,e). The number of TB6.5 observations assimi-

lated per cycle is fewer than 1000 for 9May and between

1500 and 2000 for 22 May (Fig. 4). Conversely, the 24

and 25 May events contain larger clear-sky regions

and assimilate many more observations per cycle

(Figs. 3h,k, 4). Satellite observations were not available

at 1800, 2100, and 0000 UTC since theGOES-13 imager

switches to global mode at 3-h intervals, eliminating the

CONUS files used for processing.

To determine where the greatest impact from assim-

ilated TB6.5 for each case should be expected, the as-

signed vertical pressure height from the CRTM for each

TB6.5 observation is shown in Figs. 3c, 3f, 3i, and 3l. This

pressure height is essentially the level at which the peak

of the weighting function (Fig. 1) exists for the model

environment at the observation location. The vertical

height varies from ;500 hPa in parts of Kansas on

25 May to nearly 250 hPa on 22 May. One consistent

pattern from all the cases is that the vertical level is

lower in drier conditions. Where the vertical pressure

height .450 hPa, TB6.5 often exceeds 250K (Figs. 2, 3).

The 22 May event differed from the other cases in

having a moister environment, resulting in the vertical

coordinate being higher in the atmosphere for this case.

As a result, the effects of assimilating these data will

vary depending on case and location and be maximized

in different atmospheric layers. In some cases, the
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impact will bemaximized above 300hPa (22May) and in

others, near or below 500hPa (25 May).

The overall impact of assimilating TB6.5 can be de-

termined by calculating the innovation (e.g., bias), root-

mean-square innovation (RMSI), and total spread

(TSPRD) during each assimilation cycle (Dowell et al.

2004; Dowell and Wicker 2009; Dowell et al. 2011;

Yussouf et al. 2013; Wheatley et al. 2015; Jones et al.

FIG. 3. Assimilated observations for each event. (a),(d),(g),(j) Radar radial velocity, reflectivity, and Oklahoma

Mesonet observation locations at the times shown in Fig. 2. (b),(e),(h),(k) Corresponding satellite observations

(CWP and TB6.5) assimilated at the same time. Outliers are not plotted. (c),(f),(i),(l) The vertical height assigned to

each TB6.5 observation by the CRTM.
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2016). Details and equations for these observation di-

agnostics are provided by the previous references and

are also briefly defined below, based on the discussion

provided in Jones et al. (2016). The difference between

prior and posterior fields and observations represents

the innovation, and RMSI is the corresponding error

between observations and model analyzed variables.

Ensemble spread is the average innovation between the

individual ensemble forecasts of an observation type,

such as TB6.5 or reflectivity, and the ensemble mean

forecast. The summation of the prior ensemble variance

and the observation error variance results in TSPRD,

and consistency ratio (CR) is the ratio of prior ensemble

variance (RMSI2) to the square of TSPRD. When CR is

near 1.0, the ensemble variance is an optimal approxi-

mation of the error variance for a corresponding ob-

servation error (Dowell et al. 2004; Aksoy et al. 2009;

Dowell and Wicker 2009). When CR , 1.0, the en-

semble contains insufficient spread, while CR . 1.0 in-

dicates an ensemble with excessive spread.

Innovation, RMSI, TSPRD, and CR for clear-sky-

only TB6.5 are shown for each case in Fig. 5. Statistics for

radial velocity, radar reflectivity, and CWP are all con-

sistent with those shown in previous research and will

not be discussed here (e.g., Yussouf et al. 2013;

Wheatley et al. 2015; Jones et al. 2016). The prior in-

novation represents the innovation applied at the be-

ginning of the ensemble data assimilation step before

the flow-dependent bias adjustment is applied, but after

the constant bias adjustment has been applied during the

GSI step. Prior innovation ranges between 0.25 and

1.25K at early analysis times and generally remains in

that range for the duration of the cycling out to 0000

UTC. For 9 and 22 May, prior innovation changes as a

function of time, decreasing for 9 May and increasing

for 22 May as atmospheric conditions evolve for these

cases (Figs. 5a,b). In both cases, the amount of cloud

cover increases, and the number of assimilated obser-

vations decreases. Posterior innovation is generally less

than 60.25K for all cases. RMSI generally ranges be-

tween 0.5 and 1.5K,with the posterior value being;0.5K

less than the prior value, indicating an overall reduction

in TB6.5 error during each assimilation cycle. TSPRD is

roughly constant at;1.6K for all cases after the first two

assimilation cycles. The overall CR differs from case to

case but is.1 for most assimilation cycles. Experiments

using a smaller observation error (1.25K) to lower

spread did result in a more ideal CR for all cases in the

early assimilation periods, but also generated significant

overfitting problems in later periods (not shown). Also,

CR decreases as a function of time for two cases (22 and

24 May), falling below 1 by 2300 UTC (Figs. 5b,c). For

22 May, the number of assimilated observations behind

the dryline increases, while the number ahead decreases.

Behind the dryline, simulated clear-sky TB6.5 are rela-

tively homogeneous, reducing overall spread at later

forecast times. Similar behavior occurred on 24 May, as

the rapid growth of the convective clouds reduced as-

similated observations in the prestorm environment,

leaving only those in the less-perturbed area behind the

dryline. Overall, the saw-tooth pattern of innovation

and RMSI indicate that the assimilation of clear-sky

TB6.5 is successful at reducing simulated TB6.5 model

errors, and now it is important to determine if this

FIG. 4. Number of assimilated TB6.5 clear-sky observations as a function of time for each case.

No data were available at 1800, 2100, and 0000 UTC.
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reduction in error corresponds to an improvement in the

analyzed atmospheric conditions.

5. Environmental impact

The impact of assimilating TB6.5 can be assessed in

several ways. First, the simulated ensemble mean TB6.5

from both experiments are compared at selected anal-

ysis times, corresponding to observations in Fig. 2

(Fig. 6). For all cases, simulated TB6.5 are generally

lower than the corresponding observations, which re-

quires the application of the bias adjustment described

in section 3. However, assimilating TB6.5 still has a sig-

nificant impact on themodel analysis, with differences of

up to 5K present in clear-sky regions (Fig. 6l). Differ-

ences in cloudy areas, defined as when either CNTL or

WV indicates clouds, are masked out, as they can vary

significantly due to relatively minor differences in the

microphysical properties of the clouds.

At 2200 UTC 9 May, WV generates lower TB6.5 in

much of central and northern Texas, with a narrow band

of increased TB6.5 located to the southeast of convection

in southern Oklahoma (Figs. 6a–c). Smaller differences

are present in central Oklahoma behind the dryline. At

2200 UTC 22 May, several areas where TB6.5 differs

between CNTL and WV are present, with the most ap-

parent occurring in the clear-sky areas west of the ongoing

convection and another area in central Texas, east of the

convection. In the latter area, TB6.5 is reduced on the

order of 1–2K, except in a small pocket, where an increase

of ;1K occurs (Figs. 6d–f). Similar differences are ap-

parent on at 2200 UTC 24 May, with TB6.5 decreasing

1–2K east of developing convection in Kansas and Okla-

homa (Figs. 6g–i). The greatest differences betweenCNTL

and WV are reserved for the 25 May event, where TB6.5

increases up to 5K in central Kansas and 2–3K over much

of the state, surrounding the convection located in north-

central Kansas at this time (Figs. 6j–l). TheTB6.5GOES-13

image in Fig. 2d indicates a very dry mid- to upper-level

environment, and the difference between CNTL and WV

suggests that CNTL may have a significant moist bias,

which will be explored in greater detail below.

The differences between CNTL andWV experiments

are generally consistent with the difference between

FIG. 5. Innovation, RMSI, TSPRD, and CR (unitless) for each case.
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bias-adjusted observations and the ensemble mean WV

model analyses at these times (O2A; Fig. 7). Note that

observations have been bias adjusted prior to calculating

these differences. In most cases, where observations are

warmer than the prior forecasts, the difference between

CNTL and WV is also positive. The same is true for

FIG. 6. Synthetic TB6.5 for (a),(d),(g),(j) CNTL and (b),(e),(h),(k) WV experiments at 2200 UTC 9, 22, and

24 May and 2330 UTC 25 May. (c),(f),(i),(l) Difference in TB6.5 (WV 2 CNTL) for each case. Lines indicate the

location of dewpoint cross sections shown in Fig. 8, and black dots indicate the locations of soundings present within

the domain of each case, which are shown in Figs. 9–11.

APRIL 2018 JONE S ET AL . 1087

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:28 PM UTC



negative differences. Some exceptions do exist, and the

magnitudes of the model differences are generally

greater. However, the model differences have the ad-

vantage of 4–6 h of data assimilation, while the O 2 A

plots only represent the differences at a single time.

The differences in observed and simulated TB6.5

should correspond to differences in the model environ-

ment, especially in relation to atmospheric moisture

content. To measure these differences, west to east cross

sections of dewpoint were created at the locations and

analysis times denoted in Fig. 6 for each case. Dewpoint

is plotted instead of water vapor mixing ratio so that

differences can be visualized at all levels using a linear

scale. Figure 8 shows the dewpoint differences (WV 2
CNTL) along these cross sections and the TB6.5 differ-

ence along the same track. For all cases, positive TB6.5

FIG. 7. Difference in ensemble mean simulated TB6.5 fromWV andGOES-13 TB6.5 (O2A) for each case at 2200 UTC 9, 22, and 24 May

and 2330 UTC 25 May.
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differences generally correspond to a decrease in dew-

point above 600hPa. This is consistent with higher TB6.5

being associated with drier atmospheric conditions. Con-

versely, dewpoint increases when the TB6.5 difference is

negative. The magnitude and location of these differences

change from case to case. On 9 May, the largest differ-

ences occur between 550 and 400hPa, with smaller dif-

ferences above and below (Fig. 8a). Near 96.08W, the

decrease in dewpoint exceeds 4K in a small area, with a

much larger area of decreases .1K surrounding this lo-

cation. Below 650hPa, a dewpoint increases slightly

(,1K) in the same area. The region east of 96.58W rep-

resents the environment that is entrained into the southern

Oklahoma convection over the next 2h, and its impact on

forecast convection is explored further in section 6.

The dewpoint differences along the selected cross

section on 22May are the smallest of all the experiments

and are also maximized at the highest altitude

(;300hPa), which is consistent with the higher vertical

coordinates assigned to the TB6.5 observations for this

event (Fig. 3f). The cross section transverses the area in

central Texas, where both a decrease and increase in

TB6.5 were observed (Fig. 8b). Thus, the upper-level

environment east of the ongoing convection shows both

increases and decreases in moisture, depending on lo-

cation. Larger differences are apparent on 24 May

(Fig. 8c). On this day, a dryline is located along the

1018W parallel with convection developing on the east-

ern side. The cross section transverses the dryline, with

WV being drier in the 550–450-hPa layer in excess of 4K

while increasing moisture to the east. These changes are

consistent with the positive to negative TB6.5 difference

along this track. The largest dewpoint differences occur

for the 25 May event, with WV being in excess of 4K

FIG. 8.West–east vertical cross sections of dewpoint difference (WV2CNTL) for each event at the times shown in Fig. 6. Red contours

indicated a dewpoint innovation of,4K, and blue contours indicate dewpoint innovation.4K. The difference in simulated TB6.5 along

the same track is represented by the black line.
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drier between 600 and 450 hPa along the entire track

located across southern Kansas (Fig. 8d). A secondary

layer of drying occurs near 350 hPa. Given the large

difference between observed and simulated TB6.5, the

large impact to the model environment is expected.

Finally, it is important to determine if changes in

the model environment from assimilating TB6.5 are

consistent with observed atmospheric conditions. Un-

fortunately, high spatial and temporal resolution upper-

air observations of moisture are not readily available,

preventing a complete verification. However, some air-

craft, operational soundings, and experimental sound-

ings from the Mesoscale Predictability Experiment

(MPEX) are available, allowing a few snapshot com-

parisons of the model environment to reality. Significant

limitations exist, with these comparisons due to poor

spatial and temporal sampling and the potential obser-

vations to be strongly impacted by cloud cover. The

criteria for using observed soundings are that they occur

between 2100 and 0000 UTC and are not near the

boundary of the domain. For the 9 May case, three op-

erational soundings from 0000 UTC (10 May) exist

within the model domain. They are located in Fort

Worth, Texas (KFWD), Norman, Oklahoma (KOUN),

and Little Rock, Arkansas (KLZK), each sampling dif-

ferent conditions (Fig. 9). The location of each sounding

is given in Fig. 6. Ensemble mean profiles of tempera-

ture and dewpoint at 0000 UTC are compared with the

observations at each site (Fig. 9). At KFWD, WV

moistens the 400–450-hPa layer, better matching obser-

vations, but this moistening carries over into a dry layer

observed in the 450–525-hPa layer (Fig. 9a). The boundary

layer moisture at KFWD is overestimated by both exper-

iments. At KOUN, differences between CNTL and WV

are small, with the latter having a slightly better match to

observations in the 350–450-hPa layer (Fig. 9b).Unlike the

KFWD location, the boundary layer is almost perfectly

analyzed by both experiments. Both KFWD and KOUN

represent conditions behind the dryline in the post-

convection environment. The third sounding at KLZK is

located ahead of the dryline, but there is ongoing pre-

cipitation at this site at the time of the sounding. The

sounding and model analyses indicated a saturated atmo-

sphere from just above the surface to 650hPa (Fig. 9c).

Above this layer, differences in CNTLandWVexist, but it

is difficult to discern which is better or worse. The overall

dewpoint error is given in Table 4, with WV generating a

larger overall error at KFWD, a slightly smaller error at

KOUN, and similar errors at KLZK. Differences in tem-

perature between CNTL andWV are small for all sites for

this and all later cases.

Three operational soundings were also available

within the domain for the 22 May case, including sites

at Amarillo (KAMA), KFWD, and KOUN (Fig. 10).

Differences betweenCNTL andWVat all three sites are

generally small, consistent with the small dewpoint

changes observed for this case (Fig. 10). The largest

difference occurs at KFWD, where WV moistens the

300–500-hPa layer (Fig. 10b). This is the correct signal

for the 375–450-hPa layer but incorrect outside this

layer. Overall dewpoint error at this site increases from

5.3K in CNTL to 6.1K in WV (Table 4). In the case of

24 May, the only radiosonde side within the domain is

located at DDC, but the 0000UTC sounding for this day

was not available (likely not launched due to convection

in the area at that time).

For 25 May, operational soundings from Dodge City

(DDC) and Topeka (TOP), Kansas, existed at 0000

UTC, along with two MPEX soundings in southern

Kansas at 2130 and 2330 UTC (MPX1, MPX2) within

the domain. All observations indicate a very dry mid-

and upper troposphere, which is generally much drier

than the CNTL model analysis at these sites. At MPX1,

the boundary layer extends to near 700 hPa, above

which the atmosphere dries rapidly (Fig. 11a). Between

700 and 500hPa, and in a second layer between 400 and

200 hPa, CNTL is far too moist, compared to the ob-

servation. The assimilation of TB6.5 in the WV experi-

ment dries the 700–500-hPa layer, substantially reducing

dewpoint error. This atmospheric layer is significantly

below the peak weighting function of the TB6.5 channel,

which is located at ;375 hPa for a CONUS standard

atmosphere (Fig. 1a). However, the mid- and upper-

tropospheric moisture conditions for this case are sig-

nificantly drier than the standard atmosphere, leading to

increased sensitivity at lower levels. Sensitivity above

this layer remains, as there is a small increase in atmo-

spheric moisture content between 500 and 430 hPa that

WV fails to analyze, increasing error at these levels. For

MPX1, the average dewpoint error between 700 and

250 hPa decreases from 8.2K in CNTL to 5.5K in WV,

with WV still being too moist above 400hPa (Table 4).

Similar differences were observed at the MPX2 site

(Fig. 11b), with WV being much drier than CNTL in the

600–500-hPa layer, while somewhat missing the mois-

ture between 500 and 450 hPa. For MPX2, dewpoint

error decreases from 8.3 to 5.0K (Table 4). Neither

CNTL nor WV seems to resolve this feature. It should

be noted that the vertical resolution of the model is

rather poor in this region of the atmosphere, with levels

located near 520, 480, 440, 410, and 380hPa. Thus, rel-

atively thin layers of moist or dry air at these levels are

likely to be poorly analyzed.

Comparison with the two operational soundings in the

domain (DDCandTOP) shows similar results. AtDDC,

WV is much drier between 600 and 300 hPa and also

1090 MONTHLY WEATHER REV IEW VOLUME 146

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:28 PM UTC



moister at the surface, both consistent with observations

(Fig. 11c). Closer inspection of the surface conditions at

this site shows that CNTL has a southwest wind, while

WV is calm and DDC shows a slight northeasterly wind;

thus, WV at DDC has less dry-air advection and greater

surface moisture. Whether or not this feature is directly

FIG. 9. Observed operational soundings launched at three sites at 0000 UTC 10 May 2016. Black lines indicate observed temperature,

dewpoint, and wind profiles. Red and green correspond to CNTL temperature and dewpoint, respectively. Blue and purple correspond to

WV temperature and dewpoint, respectively. CNTL and WV winds are denoted as red and blue.
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related to the assimilation of TB6.5 is unclear. The

eastern-most verification site is TOP, which indicates a

boundary layer from the surface to near 750hPa, which

is ;100 hPa deeper than either CNTL or WV. Between

420 and 250 hPa, WV decreases dewpoint, though WV

still retains a large dewpoint error (9.6 vs 7.1 K). The

verification of CNTL and WV against observations

strongly indicates that assimilating TB6.5 is correctly

drying the mid- and upper troposphere, with the

single exception of the thin moist layer observed on

the MPEX soundings. The use of sounding data from

the Atmospheric Radiation Measurement (ARM)

site in northern Oklahoma was considered for several

cases, but the quality-controlled soundings were

found to be quite noisy, making even a qualitative

comparison between observations and model ana-

lyses difficult.

In addition to radiosonde verification, it is also pos-

sible to assess the impact of assimilating TB6.5 by com-

paring the model analyses against measurements from

Aircraft Communication, Addressing, and Reporting

System (ACARS) reports from commercial aircraft.

However, ACARS measurements bring with them a

large set of challenges, including limited spatial and

temporal sampling, a lack of vertical profile information

except near airports, and relatively low-quality humidity

measurements, compared to radiosondes. Despite these

limitations, a comparison of CNTL and WV against

ACARS dewpoint measurements can yield useful re-

sults. Figure 12 shows the location and pressure height of

all ACARS dewpoint observations between 1900 and

0000 UTC for each case. Note that most of the obser-

vations are centered at major airports, such as DFW on

9May, AMA andOKC on 22May, andMCI on 25May.

Since aircrafts are landing and taking off at these loca-

tions, the vertical profile of humidity is measured. Oth-

erwise, measurements are generally taken at cruising

altitudes above 250 hPa, where limited moisture exists.

Dewpoint bias and RMSE between ACARS observa-

tions and model analyses at 1900, 2000, 2100, 2200, 2300,

and 0000 UTC were calculated and are given in Table 5.

The only significant difference between CNTL and WV

errors occurs on 9 May, where the bias is lowered by

;0.5K. This case has the largest ACARS sample size,

and the data are placed in a location whereWV is clearly

making an impact on the environment (Fig. 6). For the

other cases, the locations with the maximum impact of

assimilating TB6.5 are not sampled, resulting in no

significant differences in CNTL and WV when com-

paring against ACARS. Overall, comparisons of

CNTL and WV against sounding and ACARS obser-

vations clearly indicate that assimilating TB6.5 has a

measurable impact to the analyzed environment in

many regions. However, whether this impact is con-

sistently positive or negative is less clear, especially

for the 22 and 24 May cases.

6. Reflectivity and updraft helicity forecasts

a. Examples

The most important consideration for this research is

how assimilating TB6.5 affects the short-term forecasts of

high-impact weather events. Since there are seven

forecast periods for each of the four cases, an in-depth

analysis of each would not be possible in the confines

of a single article. Thus, two example forecasts were

selected to illustrate both positive and negative impacts

from assimilating TB6.5. These 2-h forecasts begin at

2200 UTC 9 May and 2330 UTC 25 May. For the 9 May

case, 1-km-resolution MRMS composite reflectivity is

compared against model-simulated probability matched

mean (PMM) composite reflectivity at the analysis time

(2200 UTC) and at 30-min forecast intervals thereafter

until 0000UTC (Fig. 13). Probability matching is used to

restore amplitudes characteristic of a single member to

the ensemblemean (Ebert 2001). A probabilitymatched

mean field is created by sorting each value in the en-

semble mean and full ensemble from highest to lowest.

Values from the full ensemble are then thinned by the

number of ensemble members and substituted into the

ensemble mean field. A neighborhood with a radius of

15 grid points is used in calculating PMMfields to ensure

that ensemble member values occurring near corre-

sponding ensemble mean values are used in the sub-

stitution. MRMS reflectivity at 2200 UTC shows a line

of severe convection extending from southern Okla-

homa into Kansas, with an additional area of pre-

cipitation located in northwest Arkansas (Fig. 13a).

Both CNTL and WV generate a good representation

of the severe convection but significantly overforecast

TABLE 4. Dewpoint error between 700 and 250 hPa between

available observed soundings and ensemblemean analyses for both

experiments.

Location Date Time (UTC) CNTL (K) WV (K)

FWD 10 May 0000 3.8 5.1

OUN 10 May 0000 3.6 3.0

LZK 10 May 0000 6.2 6.1

AMA 23 May 0000 11.3 11.3

FWD 23 May 0000 5.3 6.1

OUN 23 May 0000 6.9 6.8

MPX1 25 May 2130 8.2 5.5

MPX2 25 May 2330 8.3 5.0

DDC 26 May 0000 9.6 7.1

TOP 26 May 0000 6.2 4.5
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precipitation in AR (Figs. 13b,c). CNTL and WV

differ in this aspect, with the latter generating much

less precipitation, thereby better matching observa-

tions. Similar characteristics are apparent at 2230

UTC (Figs. 13d–f). By 2300 UTC, the coverage of

precipitation in Arkansas has increased in the WV

experiment and is now similar to CNTL (Figs. 13g–i).

The representation of convection in southern Okla-

homa is similar. After 2300 UTC, WV differs from

CNTL in this area by maintaining the southern

Oklahoma storms as two clearly defined supercells,

while CNTL weakens the northern supercell more

FIG. 10. As in Fig. 9, but for observed operational soundings launched at three sites at 0000 UTC 23 May 2016.
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rapidly (Figs. 13j–o). Corresponding MRMS data

show individual convective cores .55 dBZ remain at

0000 UTC (Fig. 13m).

Larger differences between CNTL and WV can be

seen when analyzing forecasts in a probabilistic frame-

work. Figure 14 shows the probability of composite

FIG. 11. As in Fig. 9, but for observed MPEX and operational soundings launched at four sites in Kansas on 25–26 May 2016.
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reflectivity .40 dBZ and 2–5-km updraft helicity

.60m2 s22 over the 2-h forecast period for both exper-

iments with severe weather reports during that time

period overlaid. CNTL generates moderate (.50%)

probability reflectivity swaths associated with the

southern Oklahoma convection that persist for the

entire forecast period (Fig. 14a). The ‘‘right turn’’ for

these supercells is also evident. Shorter swaths are

present in north-central Oklahoma, indicating weaken-

ing convection, with a large area of high probabilities in

southern Kansas associated with nonsupercell convec-

tion. Additional moderate probability swaths with a

southwest to northeast orientation are located in Ar-

kansas. Corresponding updraft helicity (UH) tracks

generally have much lower probabilities (Fig. 14b).

The only tracks of significance are associated with the

southern Oklahoma supercells, with one maintaining

30%–40% probabilities and the other .50% probabil-

ities. Both generated several tornadoes during this

FIG. 12. Locations of ACARS dewpoint observations for each case between 1900 and 0000 UTC, with colors indicating pressure height of

each observation. Major airports associated with observations within each domain are labeled.

TABLE 5. Dewpoint bias and RMSE between ACARS obser-

vations and ensemble mean analyses for each case aggregated over

analysis times 1900, 2000, 2100, 2200, 2300, and 0000 UTC.

Event Number

Bias RMSE

CNTL WV CNTL WV

9 May 365 21.23 20.76 4.54 4.48

22 May 234 21.14 21.15 4.08 4.12

24 May 157 0.05 20.04 4.02 4.00

25 May 178 21.98 22.01 4.12 4.16
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FIG. 13. Observed MRMS composite reflectivity and corresponding CNTL and WV PMM

composite reflectivity analyses and forecasts at 2200 UTC and 30-min intervals afterward until

0000 UTC.
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forecast period. Elsewhere, probabilities are generally

less than 20%, even for tornadic storms in north-central

Oklahoma.

Reflectivity and UH probabilistic forecasts generated

from WV differ from CNTL in several important

aspects. Reflectivity probabilities associated with the

southern Oklahoma supercells generally exceed 80%,

indicating that more ensemble members maintain these

storms in the forecast (Fig. 14c). Farther north, higher

probabilities are also apparent with the north-central

FIG. 14. Probability of simulated composite reflectivity from each ensemble member.40 dBZ and 2–5-km UH. 60m2 s22 for the 2-h

forecast period beginning at 2200 UTC 9 May for both CNTL and WV experiments. Black contours indicate PMM reflectivity at 25 and

40 dBZ at the end of the 2-h forecast period. Green dots represent severe hail reports, blue squares represent severe wind reports, and red

inverted triangles represent tornado reports during the 2-h forecast period.
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Oklahoma storm that generated a single tornado report

at 2221 UTC. In Arkansas, the forecast is similar to

CNTL, but with less spread and more defined storm

tracks. The UH forecasts generated by WV also differ,

producing higher UH probabilities for the southern

Oklahoma supercells, compared to CNTL (Fig. 14d).

The largest difference is for the more northern of these

two supercells, with probabilities increasing from,40%

to near 70%. Also, WV generates small areas of .50%

UH probabilities associated with the other tornadic

storms in Oklahoma, compared to almost no probability

from CNTL, and has a lower false alarm signal for the

north Texas storm. These results indicate that for this

forecast period, assimilating TB6.5 modifies the model

environment in such a way as to make it favorable for

rotating supercells to persist in Oklahoma, while de-

creasing favorability in Arkansas. The key difference is

an increase in ensemble mean convective available po-

tential energy (CAPE) and a corresponding decrease in

convective inhibition (CIN) in southeast Oklahoma

(Fig. 15).

While assimilating TB6.5 generated a positive impact

for the example above, the results for a forecast origi-

nating at 2330 UTC 25 May were much different. At

2330 UTC, MRMS reflectivity shows an isolated su-

percell located in north-central Kansas, with attempts at

storm development farther south (Fig. 16a). This case

differs from the other three cases in several important

ways. On 25 May, midtropospheric conditions were

much drier than for the other events. Recall that the

model has a consistent moist bias relative to available

observations (Fig. 11). Also, overall dynamic forcing

was limited, significantly reducing convective initiation

relative to the other cases. Finally, much of the domain

was completely cloud free, allowing for warmer tem-

peratures, but also increased mixing that reduced the

amount of moisture as the afternoon progressed. As a

result of these factors, only a single supercell developed

in Kansas, compared to the much more widespread

convection observed in the other cases. Both CNTL and

WV correctly analyze the primary storm, with the dif-

ferences between the two experiments being small

(Figs. 16b,c). As forecast time increases, the size and

magnitude of forecast PMM reflectivity by WV de-

creases relative to CNTL, indicating that WV is weak-

ening the storm too quickly. MRMS observations show

that the supercell maintains itself throughout this 2-h

period with additional development occurring in

northern Oklahoma, which is not forecast by either

CNTL or WV. By 0130 UTC, both experiments appear

to be incorrectly weakening the storm, butWV is clearly

weakening it faster (Figs. 16m–o). Probabilistic forecasts

of reflectivity and UH are consistent with the PMM

reflectivity forecasts. CNTL generates both higher

reflectivity and UH probability swaths associated with

this storm than does WV (Fig. 17). In particular, the

UH probabilities are much lower, indicating that

many members fail to retain supercell characteristics

with increasing forecast time. Evidence suggests that

the saturated updraft parcels are mixing with the drier

atmosphere in WV, causing analyzed convection to

prematurely weaken in the model forecast. The drier

atmosphere in WV also increases CIN slightly, com-

pared to CNTL, ahead of the supercell at 2330 UTC

(not shown). Finally, Gilmore and Wicker (1998)

noted that very dry midlevel air resulted in low-level

outflow that outran the corresponding midlevel me-

socyclone, subsequently leading to weakening of the

overall storm. Comparison of the storm morphology

between CNTL and WV is consistent with these

observations.

Recall that assimilating TB6.5 often dried the mid- and

upper troposphere in the model analysis, better match-

ing the very dry conditions observed in the various

soundings. Also, the observations indicated that both

experiments failed to capture the depth of the boundary

layer moisture present for this day, even though both

generate high (.4000 J kg21) and low CIN (,25 J kg21)

environments. Given the very dry nature of themid- and

upper troposphere, any underestimation of boundary

layer moisture will have a negative impact on the ana-

lyzed environment’s ability to support convection. Thus,

assimilating TB6.5 correctly reduces a moist bias in the

mid- and upper troposphere, but at the same time re-

duces the favorability of the environment to support

convection, given the already underestimated boundary

layer moisture.

b. Object-based verification

The overall accuracy of ensemble forecasts for each

event is assessed using object-based verification (e.g.,

Davis et al. 2006a,b). Simulated composite reflectivity

and 30-min, 2–5-km UH fields for each available fore-

cast time step are compared to corresponding verifica-

tion fields derived from MRMS composite reflectivity

and range-corrected azimuthal wind shear (Newman

et al. 2013). Objects are initially defined as coherent

regions exceeding thresholds of 40 dBZ or the 99.95th

gridpoint percentile value in the composite reflectivity

or updraft helicity/azimuthal wind shear fields (hereaf-

ter labeled as rotation objects). Reflectivity objects are

then subjected to an area threshold of 10 grid points and

rotation track objects to both area and continuity

thresholds of 10 grid points and greater than two time

steps, respectively, to limit the number of spurious ob-

jects in the dataset. Forecast and verification objects are
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matched using a simple total interest score similar to

Skinner et al. (2016) and based on the Method for

Object-based Diagnostic Evaluation (MODE; Davis

et al. 2006a,b). Components of the total interest score

are limited to displacement in space and time with

maximum allowable centroid distance (time)

FIG. 15. Ensemble mean 75-hPa mean–layer CAPE and CIN for the CNTL and WV experiments at 2200 UTC 9 May.
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displacements of 40 km (20min). Object pairs with a

total interest score exceeding 0.2 are matched and

considered ‘‘hits,’’ with forecast objects that are not

matched to an observed object considered ‘‘false

alarms.’’ The maximum space and time displacement

radii and total interest thresholds used in object

FIG. 16. Observed MRMS composite reflectivity and corresponding CNTL and WV PMM

composite reflectivity analyses and forecasts at 2330 UTC and 30-min intervals afterward until

0130 UTC.
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matching have been chosen through trial and error

(Skinner et al. 2016). The highly configurable nature of

object definition and matching is a limitation of object-

based methods (e.g., Wolff et al. 2014). However, it is

noted that while verification scores are sensitive to

object-matching thresholds, qualitative comparisons

between different datasets remain similar (Skinner et al.

2016, their Fig. A1). Object matching is performed on

each ensemble member for each forecast initialization

time for a particular case. Classification of objects as hits

and false alarms allows contingency-table-based verifi-

cation metrics (Wilks 2006) to be calculated for each

ensemble member. The verification metrics, specifically

critical success index (CSI), from each member and

forecast time for a particular case are averaged to show

the ensemble mean skill for all forecast periods.

FIG. 17. Probability of simulated composite reflectivity from each ensemble member .40 dBZ and 2–5-km UH . 60m2 s22 for the 2-h

forecast period beginning at 2330 UTC 25 May for both CNTL and WV experiments.

APRIL 2018 JONE S ET AL . 1101

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:28 PM UTC



The number of reflectivity and rotation objects for

each case is provided in Table 6. The greatest number of

objects occurs on 9May, with over 71 000 reflectivity and

11 000 rotation objects generated by both experiments.

The WV experiment generates several thousand fewer

reflectivity objects, compared to CNTL, which is con-

sistent with the decrease in precipitation present in

Arkansas in the early forecast period (Fig. 13). How-

ever, WV generates over 2000 more rotation objects,

indicating that forecast convection is more likely to

maintain supercell characteristics than in CNTL. For

9 May, WV generates a higher CSI for reflectivity than

CNTL for the first ;30min of the forecast period, after

which both become similar (Fig. 18a). This difference is

primarily attributable to a decrease in false alarm ob-

jects occurring in Arkansas. Overall probability of de-

tection is similar. The difference between CNTL and

WV is larger when comparing CSI for rotation objects,

with WV generating higher CSI scores out to at least

60min (Fig. 18b). This is consistent with the higher UH

probabilities forecast by WV in the 9 May example

shown in Fig. 14d.

For 22 and 24 May, the object counts are similar for

both experiments. Both 22 and 24 May events indicate

little improvement in CSI for reflectivity from assimi-

lating TB6.5; however, some improvement in rotation

object CSI is evident (Figs. 18c–f). While the differences

are not large, WV consistently generates higher overall

CSI for rotation objects, compared to CNTL for

601min forecasts. The 25 May case generates far fewer

objects since only a single supercell is present within the

model domain, compared to more widespread coverage

in the other cases. This case generates substantially

different results, with WV reflectivity and rotation

forecasts performing much worse for forecast periods

out to 1 h (Figs. 18g,h). These results are consistent with

the example where WV failed to maintain the supercell

in many members. Note that CSI for several WV

members actually falls to zero after 40min have elapsed.

In addition, WV also generates a small area of ‘‘spuri-

ous’’ convection in southern Kansas in later forecast

periods that is associated with developing convection in

northernOklahoma, but not close enough to it to cause a

hit (not shown). The combination of a poor forecast of

the primary storm, a near miss, and the small object

sample size generates the poor CSI for this case.

Contingency table statistics are also calculated for the

entire set of 28 forecast cycles over all four cases to as-

sess the overall impact of assimilating TB6.5 for these

events. The total number of reflectivity and rotation

objects is approximately 130 000 and 43 000, respectively

(Table 6). The 9May event accounts for over 50% of the

reflectivity objects, while the 9, 22, and 24 May events

each account for roughly one-third of the rotation ob-

jects. The small number of objects generated by the

25 May case limits its impact to the bulk statistics.

Figure 19 provides overall CSI for reflectivity (Fig. 19a)

and rotation (Fig. 19b) objects, showing that the WV

experiments have some skill over the non-WV experi-

ments for the first 30min of the forecast period for re-

flectivity and for at least 1 h in the case of 2–5-km UH.

Corresponding probability of detection (POD) and false

alarm rate (FAR) for the combined sample shows that

the primary contributor to improving forecast skill for

reflectivity is a reduction in false alarms (Figs. 19c–f).

Conversely, the WV experiments decrease FAR and

increase POD associated with UH throughout much of

the forecast period, indicating a greater impact on the

forecast of rotating storms versus overall precipitation.

7. Conclusions

Assimilating TB6.5 during four high-impact weather

events occurring in May 2016 modified the mid- and

upper-level moisture analysis and resulting forecasts of

reflectivity and rotation. In general, assimilating TB6.5

had the expected impact on the analysis, with positive

TB6.5 innovations resulting in drying and negative in-

novations resulting in an increase in moisture. A com-

pleted verification of the environmental differences was

not possible due to limited midtropospheric observa-

tions, but available radiosonde and ACARS measure-

ments did indicate improvement in at least two cases.

For 9 May, radiosonde and ACARS measurements

indicate a decrease in themidtropospheric moisture bias

in north Texas. For 25 May, large improvements in the

moisture analysis were observed at all four of the ra-

diosonde sites available. The impact on reflectivity and

rotation forecasts was mixed with reflectivity forecasts

only being improved for the 9 May case, but rotation

object forecasts being improved for three cases (9, 24,

and 25 May) out to at least 60min. However, a large

reduction in both reflectivity and rotation skill was ob-

served for the 25 May case. Still, the improvement

TABLE 6. Number of reflectivity and rotation objects accumu-

lated over all members and forecast times for each case for both

CNTL and WV experiments.

Event

dBZ Rotation

CNTL WV CNTL WV

19 May 80 573 71 828 11 666 13 773

22 May 23 871 23 591 13 292 13 460

24 May 28 200 28 633 16 652 16 199

25 May 2836 3037 1223 958

Total 135 480 127 089 42 833 44 390
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observed in the first three cases indicates there is po-

tential to study the impact of assimilating water vapor

sensitive radiances further.

Many challenges remain to fully take advantage of

radiance assimilation in a WoF system, as demonstrated

by the results from the 25 May event. In this case, ra-

diance assimilation has the correct impact on the ana-

lyzedmid- and upper-tropospheric environment, but the

‘‘improved’’ environment resulted in less skillful su-

percell forecasts. Model uncertainties and biases in

the model analysis within the boundary layer are not

significantly impacted by the assimilation of TB6.5;

thus, negative aspects of these conditions could not

be corrected. Improving this portion of the analysis

will require a network of surface-based profilers

that can measure boundary layer temperature and

FIG. 18. CSI for reflectivity and UH averaged over seven 2-h forecast periods for each case and

experiment.
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moisture conditions that cannot be adequately re-

solved from satellite data. This also indicates that

additional research into correction of inherent model

biases is required in the future. Still, GOES imager

data show promise in adjusting the mid- and upper-

tropospheric conditions closer to observations and the

additional channels provided by the ABI on board the

recently launched GOES-16 satellite have the poten-

tial have a greater positive impact on the model

environment.
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